skip to main content


Search for: All records

Creators/Authors contains: "Horaites, Konstantinos"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We provide evidence that the sunward-propagating half of the solar wind electron halo distribution evolves without scattering in the inner heliosphere. We assume the particles conserve their total energy and magnetic moment, and perform a ‘Liouville mapping’ on electron pitch angle distributions measured by the Parker Solar Probe SPAN-E instrument. Namely, we show that the distributions are consistent with Liouville’s theorem if an appropriate interplanetary potential is chosen. This potential, an outcome of our fitting method, is compared against the radial profiles of proton bulk flow energy. We find that the inferred potential is responsible for nearly 100 per cent of the proton acceleration in the solar wind at heliocentric distances 0.18-0.79 AU. These observations combine to form a coherent physical picture: the same interplanetary potential accounts for the acceleration of the solar wind protons as well as the evolution of the electron halo. In this picture the halo is formed from a sunward-propagating population that originates somewhere in the outer heliosphere by a yet-unknown mechanism.

     
    more » « less
  2. Abstract

    Rapid plasma eruptions explosively release energy within Earth’s magnetosphere, at the Sun and at other planets. At Earth, these eruptions, termed plasmoids, occur in the magnetospheric nightside and are associated with sudden brightening of the aurora. The chain of events leading to the plasmoid is one of the longest-standing unresolved questions in space physics. Two competing paradigms have been proposed to explain the course of events. The first asserts that magnetic reconnection changes the magnetic topology in the tail, severing a part of the magnetosphere as plasmoid. The second employs kinetic instabilities that first disrupt the current sheet supporting the magnetotail and launch waves that trigger the topological change to eject the plasmoid. Here we numerically simulate Earth’s magnetosphere at realistic scales using a model that captures the physics underlying both paradigms. We show that both magnetic reconnection and kinetic instabilities are required to induce a global topological reconfiguration of the magnetotail, thereby combining the seemingly contradictory paradigms. Our results help to understand how plasma eruptions may take place, guide spacecraft constellation mission design to capture these ejections in observations and lead to improved understanding of space weather by improving the predictability of the plasmoids.

     
    more » « less
  3. ABSTRACT We develop a kinetic theory for the electron strahl, a beam of energetic electrons which propagate from the sun along the Parker-spiral-shaped magnetic field lines. Assuming a Maxwellian electron distribution function in the near-sun region where the plasma is collisional, we derive the strahl distribution function at larger heliospheric distances. We consider the two most important mechanisms that broaden the strahl: Coulomb collisions and interactions with oblique ambient whistler turbulence (anomalous diffusion). We propose that the energy regimes where these mechanisms are important are separated by an approximate threshold, ${\cal E}_\mathrm{ c}$; for the electron kinetic energies ${\cal E}\,\lt\, {\cal E}_\mathrm{ c}$ the strahl width is mostly governed by Coulomb collisions, while for ${\cal E}\,\gt\, {\cal E}_\mathrm{ c}$ by interactions with the whistlers. The Coulomb broadening decreases as the electron energy increases; the whistler-dominated broadening, on the contrary, increases with energy and it can lead to efficient isotropization of energetic electrons and to the formation of the electron halo. The threshold energy ${\cal E}_\mathrm{ c}$ is relatively high in the regions closer to the sun, and it gradually decreases with the distance, implying that the anomalous diffusion becomes progressively more important at large heliospheric distances. At 1 au, we estimate the energy threshold to be about ${\cal E}_\mathrm{ c}\,\sim\, 200\, {\rm eV}$. 
    more » « less